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Liquid water, at ambient conditions, has short-range density correlations which are well known in literature.
Surprisingly, large scale molecular-dynamics simulations reveal an unusually long-distance correlation in “lon-
gitudinal” part of dipole-dipole orientational correlations. It is nonvanishing even at 75 Å and falls off expo-
nentially with a correlation length of about 24 Å beyond solvation region. Numerical evidence suggests that
the long-range nature of dipole-dipole correlation is due to underlying fluctuating network of hydrogen bonds
in the liquid phase. This correlation is shown to give a shape dependant attraction between two hydrophobic
surfaces at large distances of separation and the range of this attractive force is in agreement with experiments.
In addition it is seen that quadrupolar fluctuations vanish within the first solvation peak �3 Å�.
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Water molecule with its hydrogens and lone pairs in tet-
rahedral arrangement makes hydrogen bonds with its neigh-
boring molecules. In the liquid phase the hydrogen-bond pat-
tern undergoes rapid fluctuations at picosecond time scales
�1–3�, thus resulting in large orientational entropy. It is well
known that this special property bestows liquid water with
some unique properties, in particular the hydrophobic force
of attraction between nonpolar solutes �4�. Clever experi-
ments have been performed to measure quantitatively the
distance properties of the hydrophobic force between macro-
scopic surfaces �5,6�. Understanding these distance proper-
ties is necessary initial step to develop a proper theory for
bulk liquid water. We make an attempt toward the same in
this work using molecular-dynamics �MD� simulations and
general principles of statistical mechanics.

A water molecule can be modeled as a set of five points
corresponding to neutral oxygen O, two positively polarized
hydrogens H1, H2 and two negatively polarized lone-pair
sites L1, L2 placed at tetrahedral angles about the oxygen
atom. The angles between vectors H� 1,2 and L�1,2 and length of
each of them can fluctuate �vectors are defined with respect
to the position of oxygen O�. Such a molecule’s orientations
can be conveniently described with a choice of vectors de-
fined as:
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�
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where r is the position of oxygen atom in the bulk. The
choice of e�1�r� and e�2�r� is such that they do not depend
upon bond lengths of the molecule; they are symmetric with
respect to hydrogens and lone pairs of the molecule. ê1�r�,
ê2�r� and ê3� ê1� ê2 are the corresponding orthonormal vec-
tors. Here ê1�r� is dominantly along the direction of dipole
field and ê2�r� exists only if the water molecule differs from

its mean �near-tetrahedral� geometry i.e., it is proportional to
the quadrupole moment of the molecule.

The ê vectors �Eq. �1�� form a complete triad with which
orientation of any vector �H� 1,2 or L�1,2� can be specified. Con-
sequently dynamics of water can be understood to be an
interacting system of the ê-vector fields. In particular MD
simulation of water molecules implicitly gives us the dynam-
ics of these fields. There upon various statistical correlations
involving ê1�r�, ê2�r� and ��r���ê1�r��2= �ê2�r��2 in the liq-
uid phase of water can be formulated as follows:

���r1���r2�� = g�r� �2a�

���r1�êa�r2�� =
r

r
da�r� �2b�
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FIG. 1. Geometry of a water molecule used in TIP5P, TIP3P
models.
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where r= �r1−r2�, r= �r�; subscripts a ,b=1,2 ,3 �denote ei-
ther of ê1 , ê2 , ê3� and vector indices i , j=1,2 ,3 �denote di-
rections in three-dimensional space�.

The translational and rotational symmetry of the system
enables decomposing the tensorial properties of these corre-
lations explicitly and thus analyze the data in terms of simple
scalar functions like g�r�, da�r�, tab�r�, lab�r�. The function
g�r� is the radial distribution function and it portrays
distance-dependent density correlations only �here, of oxy-
gen�. The remaining functions capture the correlations
among other degrees of freedom of the vector fields.

TIP5P model �7,8� possesses all orientational degrees of
freedom of a water molecule and has improved accuracy in
predicting the structural properties of water at ambient con-
ditions �Fig. 1�. The simulations of TIP5P water system are
performed with GROMACS �version 3.3.1� package �9� with
an integration time step of 2 fs. The fast-moving bonds O-H
are constrained using LINCS algorithm. A large system con-
sisting of 110592 molecules in a 150 Å box is equilibrated
for 2 ns in constant pressure �isotropic and 1 atm� and tem-
perature �300 K� NPT ensemble followed by a production

run of 2 ns in a constant volume NVT ensemble. The con-
figurations are saved every 100 ps for analysis. A cutoff dis-
tance of 12 Å and a pair-list distance of 15 Å are used to
compute all nonbonded interactions and periodic boundary
conditions are imposed. Full electrostatic interactions are
computed with particle mesh Ewald �PME� method with a
tolerance of 10−6 and updated every two time steps �10,11�.

Density correlation g�r� of TIP5P displays all the well-
known solvation peaks; in addition, due to large system size
and hence better statistics, few more prominent troughs are
observed at about r=8.0 Å and r=10.0 Å �Fig. 2�. The
dipole-oxygen correlation d1�r�= �ê1�r1� · r̂��r2�� also exhib-
its solvation structure and vanishes beyond 14 Å �Fig. 3�. It
is also found that correlations involving ê2, ê3 all vanish upto
statistical errors beyond the first solvation peak itself �Figs.
4–8�. Therefore ê2, the quadrupole moment of the water mol-
ecule, fluctuates locally and randomly without any nonlocal
correlations. While ê3 being a pseudovector has vanishing
correlations with ê1 and ê2 demonstrating that there is no
parity violation in the system.
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FIG. 2. TIP5P: g�r�. Oxygen-oxygen radial distribution func-
tion. �inset� additional troughs in end-solvation region.
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FIG. 3. TIP5P: d1�r�. Oxygen-dipole correlation function van-
ishes beyond 14 Å
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FIG. 4. TIP5P: l22, �inset� t22. Longitudinal and transverse parts
of correlation �ê2ê2�, vanishing upto statistical errors after the first
solvation peak
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FIG. 5. TIP5P: l21, �inset� t21. Longitudinal and transverse parts
of correlation �ê2ê1�, vanishing upto statistical errors after the first
solvation peak
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The orientations of �dipolar� field ê1 are analyzed by the
correlations �e1

i �r1�e1
j �r2�� �Eq. �2�� where i , j refer to com-

ponents of ê1 vector. This is conveniently decomposed into
two parts: transverse trace part t11�r�= �ê1�r1� · ê1�r2�� mea-
sures the dipoles’ alignment with respect to each other and
thus solely contributes to Kirkwood dielectric function
�12–14�; and longitudinal traceless part l11�r�
= �ê1�r1� · r̂ê1�r2� · r̂� is a measure of alignment of the vectors
with respect to radial vector separating them.

The transverse correlation function t11�r� shows oscilla-
tory solvation structure, but vanishes �in compliance with the
rotational symmetry in the full system� beyond 14 Å �Fig.
9�. The function l11�r� is seen to be always positive and
furthermore, in the 14–75 Å regime it can be fitted to an
Ornstein-Zernike �OZ� form as,

l11�r� = 0.39�2�
e−r/5.2�1� Å

r
+ 0.027�1�

e−r/24�1� Å

r

r � 14 Å �3�

l11�r� shows longest correlation length of 24 Å. Furthermore
it exhibits solvation peaks upto 14 Å �Fig. 10�. The error
bars are quoted as explained in the following illustration. Eg.
The precise strength of first exponential 0.397541�0.02168
is written here as 0.39�2� which expresses the mean value
and in bracket, the error in the last significant digit. The
statistical sampling errors dramatically reduce as we go to
large distances �as expected� �see Appendix A�.

TIP3P model �15�, by design, has ê1 degree of freedom
only, i.e., each water molecule’s orientation can be com-
pletely described by ê1 field alone �Fig. 1�. The simulations
on TIP3P water system are performed using NAMD �version
2.6� �16�. Here, 33105 water molecules are simulated in a
cubical box of size 100 Å and the procedures employed for
collecting equilibriated configurations are same as those de-
scribed in case of TIP5P. The constrained model is imple-
mented using SETTLE algorithm. Analysis in this case too
shows that t11�r� vanishes beyond solvation region, whereas
l11�r� follows the same asymptotic behavior as described by
Eq. �3�. We also find that in the temperature range 280–350
K the strength of the correlation function monotonically de-
creases with increasing temperature, while the correlation
lengths show no significant variation �see Appendix A�.

A water molecule in liquid phase is predominantly influ-
enced by hydrogen bonding �short-range interaction� and fur-
ther, it has a net dipole moment which interacts through
long-range Coloumbic forces. We would like to ascertain
whether the long-distance behavior of l11�r� is due to the
short-range hydrogen-bond interactions or the long-range
Coloumbic interactions �17,18�. To test this possibility, the
Coulombic interactions are smoothly truncated at 12 Å in
TIP3P model, thus retaining an effective short-range interac-
tion alone. We find that l11�r� remains essentially unchanged
in the regions of first few solvation shells and r�30 Å �see
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FIG. 6. TIP5P: l31, �inset� t31. Longitudinal and transverse parts
of correlation �ê3ê1�, vanishing upto statistical errors after the first
solvation peak

−0.0005

0

0.0005

0.001

0 15 30 45 60 75

l32

r (Å)

−0.001

−0.0005

0

0.0005

0.001

0 15 30 45 60 75

t32

FIG. 7. TIP5P: l32, �inset� t32. Longitudinal and transverse parts
of correlation �ê3ê2�, vanishing upto statistical errors after the first
solvation peak
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FIG. 8. TIP5P: l33, �inset� t33. Longitudinal and transverse parts
of correlation �ê3ê3�, vanishing upto statistical errors after the first
solvation peak
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Appendix A�. The intermediate region exhibits overstructur-
ing effects upto 30 Å, as seen earlier �19,20�.

The above three cases are in agreement with Eq. �3� as-
ymptotically. These observations suggest that �i� water in
liquid phase has fluctuations only in dipole degree of free-
dom; in contrast, the quadrupole has no effect beyond the
first solvation peak; �ii� these dipole fluctuations in liquid
water are influenced by local environment of respective mol-
ecule through hydrogen bonding, significantly more com-
pared to long-range electrostatic interactions; and �iii� fur-
thermore, the dipole fluctuations exhibit long-distance
correlations.

Here we briefly mention the status of experimental and
other numerical observations of various correlations in liquid
water. No direct experimental determination of correlation
lengths exist. The much-studied correlation function g�r� for
water shows only solvation peaks; although recent small-
angle x-ray scattering experiments indicate that g�r� has a
correlation length of about 3 Å �300 K� �21� in corrobora-
tion with an earlier small-angle neutron-scattering experi-
ment �22�. The origin of this length is speculated to be due to
presence of low-dense and high-dense hydrogen-bonded
structures coexisting in liquid water �21� �this effect is absent
in our simulations�. As far as dipole-dipole correlations t11�r�
and l11�r� are concerned, to our knowledge, there has been
no direct experimental determination of the correlation
lengths to the precision required; in particular, the large cor-
relation lengths in l11�r�. Indeed the only long-range effect
seen in liquid water is that of attraction between two hydro-
phobic surfaces felt at distances as far as 200 Å �23�. In case
of rough hydrophobic surfaces this force is observed even at
a distance of about a micrometer �24�. In MD simulations
using spherically symmetric models of water �25–30� the
interesting correlation is g�r�, which exhibits solvation peaks
without any significant long-distance behavior; supporting
the view that any long-range correlation in water can only be
due to dipole degree of freedom.

In the following section we consider the effect of the ob-
served long-range correlations in liquid water on the solva-
tion behavior of mesoscopic hydrophobic surfaces.

Hydrophobic effect: the first notable mechanism postu-
lated to describe the origin of hydrophobic effect came from

solvation studies of Frank and Evans in the name of “ice-
berg” model �31� and later, the same effect has been eluci-
dated by Kauzmann on its possible biological implications
�32�. This phenomenon, in its various manifestations, has
been extensively discussed in recent literature �5,6,33–35�.
The simulation studies on water using various potentials fo-
cused on short-range properties of hydrophobic effect and
thermodynamics of hydrophobes’ solvation �36–39�. The
generality of these properties in fluids with characteristic in-
termolecular attractions was qualitatively explained by theo-
retical studies �40–44�. In experiments the long-range prop-
erties of the hydrophobic force were studied using a
combination of surface force apparatus �SFA� and atomic
force microscopy �AFM� techniques. In this context an early
experiment in 80s revealed a force of attraction between two
nominally hydrophobic macroscopic surfaces and found that
in the range 10 Å to 100 Å the force falls off exponentially
with a correlation length of 12 Å �45�. Later there have been
several such studies with surfaces prepared and characterized
using wide range of techniques �5,23�. Yet there were very
few theoretical developments to explain qualitatively differ-
ent force profiles observed in experiments. Theories address-
ing long-range nature of the force relied on phenomena such
as cavitation due to metastability of confined fluid �46–48�,
attraction induced by formation of liquid-vapor-like interface
near surfaces �33,49�, bridging of nanobubbles �50–52�,
surface-induced dipolar correlations propagating into bulk
�53,54� and so on. Observations from one of the recent ex-
periments �5� with smooth stable hydrophobic surfaces sug-
gest that the attraction at short distances common to all types
of surfaces is exponentially decaying within distance regime
of 10–100 Å. We address here this monotonic attractive
force in the context of mesoscopic surfaces and attribute it to
the large lengthscale equilibrium dipolar fluctuations ob-
served in pure liquid water.

Hydrophobic surfaces cannot form hydrogen bonds with
the surrounding water, consequently water molecules rear-
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range themselves such that they form a sheet of hydrogen-
bond network on the surface. Their interactions are such that
the directions of lone pairs and hydrogen atoms are perpen-
dicular to the surface normal of the hydrophobe. Owing to
the approximate tetrahedral conformation, water molecules
cannot have a unique configuration satisfying the above cri-
terion �55�. Consequently they explore other possible orien-
tations as well by fluctuating at the picosecond time scales
�56–58�. These network fluctuations contribute significantly
to the free energy of solvation of the hydrophobe. In pres-
ence of two such hydrophobes, as noted earlier, the range of
the force acting between them is large i.e., over a scale
�100 Å and to numerically observe this effect a system
with about a million atoms needs to be simulated, which is
computationally very expensive. Alternatively, a quantitative
theoretical estimate is considered below.

Interaction between hydrophobic surface and solvent wa-
ter can be written in terms of n̂�r�, the local unit normal
vector to the hardcore van der Waals surface of the hydro-
phobe and ê1�r��, the dipole of water molecule near the sur-
face, where r�=r+�r; �r is typical length of hydrogen arm
of water molecule �about 1 Å�. A simple local interaction
term can be taken as �n̂�r� · ê1�r���2 implying that the water
dipoles orient orthogonal to the surface normal as seen in
simulations �59–61� �importantly, no linear term in �n̂ · ê1�,
for that means a preferential orientation of the water dipole
inward/outward to the surface�.

The change in free energy due to purely hydrophobic in-
teraction between two small surfaces S1 and S2 �Fig. 11� in
water can be estimated by

e−�G/kT = �e−�H/kT�

�H =
�1

2
�

S1

dn̂1�n̂1�r1� · ê1�r1���
2 +

�2

2
�

S2

dn̂2�n̂2�r2� · ê1�r2���
2

�4�

� is a measure of strength of interaction between hydropho-
bic solute and water which can depend upon temperature,
density and other parameters defining the thermodynamic
system. The brackets � . . . � refer to statistical averaging with
respect to pure water system and integration is over area of
each surface. As illustrated in Fig. 11, S1, S2 refer to two
arbitrary hydrophobic surfaces and R is a vector along mini-
mum distance of separation between them.

When the distance R�=�R�� is large compared to radius of
curvature of each surface and the surface areas sufficiently
small, the statistical averaging can be done by cumulant ex-
pansion. The leading term of the force F�R�=−��G /�R is
given by the following equation �see Appendix B�,

F�R� �
�1�2

2kT

�

�R
�

S1

�
S2

dn̂1dn̂2��n̂1�r1� · ê1�r1��n̂2�r2� · ê1�r2���
2� =

�1�2

2kT
A1A2

�

�R
Tr��S1

E�R��S2
E�R�� �5�

where A1, A2 are areas of the surfaces and the matrices E, �S are given by

Eij�R� � �e1
i �r1��e1

j �r2��� � −
1

2
	�ij − 3

RiRj

R2 
l11�R� for large R

�S
ij �

1

A
�

S

dn̂ninj

�S is a geometric factor characteristic of shape of the surface
�see Appendix C�.

The above result on hydrophobic force is very general in
nature. As discussed in earlier paragraphs, the leading order
�n̂ · ê1�2 is taken to be the interaction energy term for simplic-
ity. By including the nonleading terms in the interaction en-
ergy function �Eq. �4�� and doing the cumulant expansion, it
can be shown that the force term �Eq. �5�� for large R re-
mains unchanged, thus establishing the generality of the re-
sult.

These considerations are valid for distances beyond the
solvation region of a typical water molecule. The cumulant
expansion allowed decomposing the force equation as a
simple convolution of surface-dependent part and water-
dependent part. Equation �5� enables us to conclude that
range of the force between hydrophobic surfaces at large
distances is always attractive governed by l11

2 �R�	e−R/12 for
large R. Therefore the hydrophobic force falls off exponen-
tially with a largest correlation length of about 12 Å �see
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FIG. 11. S1 ,S2 are hydrophobic surfaces with their local normal
vectors n̂1, n̂2. “R” is the minimum distance between the two
surfaces
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Appendix B�, in addition to several other shorter range ex-
ponents as well,

F�R� 	 − e−R/12 Å for large R , �6�

The strength of attraction is proportional to area A and
shape of each surface given by the tensor �, the second
moment of surface normal. The final trace operation over the
matrices E�R� and �S �as in Eq. �5�� implies that the hydro-
phobic attraction is not just a purely distance-dependent in-
teraction such as van der Waals’. Indeed the orientation of
the surface shapes relative to each other can modify this
force significantly. As an example if two small planar hydro-
phobic surfaces are mutually perpendicular and are suffi-
ciently far apart, there should be no force between them as
opposed to when they face each other �see Appendix C�.

Our systematic analysis of data from MD simulation of
liquid water clearly shows that only longitudinal dipole-
dipole correlation exhibits long-range behavior with correla-
tion lengths of about 5 and 24 Å �Eq. �3��. Experimental
validation of this correlation has eluded many efforts mainly
because in a generic light-scattering experiment photons
couple to dipole of water molecules and the leading scatter-
ing effect comes from the transverse correlation only. There-
fore we considered indirect effects of the longitudinal dipolar
fluctuations; of which the promising candidate seems to be
the “hydrophobic force.” It is well known that the nature of
hydrophobic force between macroscopic surfaces is very dif-
ferent from that of mesoscopic surfaces �33�. These differ-
ences need to be analyzed either with MD simulation or
modeling hydrogen-bond network interactions in liquid wa-
ter. A simple-minded theoretical estimate of the force be-
tween mesoscopic hydrophobic surfaces done here suggests
that the surfaces do experience a long-range force albeit the
strength is not large and in addition, the proposed force de-
pends on shape and relative orientations of the surfaces. It

would be an interesting challenge to device AFM type of
setup to validate this phenomenon experimentally.

Computer time on Vindhya and KABRU computing clusters
at the Institute of Mathematical Sciences is greatly appreci-
ated.

APPENDIX A

Theoretical considerations suggest that in any statistical
system at thermal equilibrium, fluctuating modes in three-
dimensional space will generate correlations of Ornstein-
Zernike �OZ� form, i.e., e−r/


r ; for example, Debye correlation
in a plasma of ions. There may indeed be more than one such
mode in a system. If they are weakly interacting modes, their
strength coefficients would all be positive as in Eq. �3�. For
completeness other fit functions are also tried on l11�r� data.
Their corresponding root-mean-square deviations �RMSDs�
and the tested models are summarized in Table I.

Among the exponentials, the biexponential OZ function
has at least a factor of two better RMSD than other combi-
nations. A single power law also seems to fit the data very
well in this limited distance range upto 75 Å. However, if
this behavior is extrapolated asymptotically for large dis-
tances, it amounts to the fact that the system is exhibiting
critical behavior. But in MD simulations, we did not see any
concomitant signatures of critical behavior at all. Further-
more, liquid water is certainly not critical at ambient condi-
tions. Therefore, we discard the power-law extrapolation and
conclude that the biexponential OZ fit function is the correct
extrapolation.

The above comparison between various fitting functions,
to ascertain the asymptotic behavior of the l11�r� correlation,
does not cleanly discard one fit function over the other. From
numerics point of view 1 /r3 fit cannot be strictly ruled out.
In dipolar fluids linear-response theories propose the exis-

TABLE I. Numerical fitting of l11�r� obtained from simulations of TIP5P and TIP3P data. The error bars
quoted are as per the following illustration: e.g., 0.397 541�0.021 68 is written as 0.39�2� which expresses
the mean value and its leading significant deviation.

Model Fit function f�r� RMSD

TIP5P
0.39�2�

e−r/5.2�1�

r
+ 0.027�1�

e−r/24�1�

r 2.54462e−05

TIP3P
0.34�2�

e−r/5.4�2�

r
+ 0.029�3�

e−r/24�1�

r 2.54122e−05

TIP5P
0.152�2�

e−r/10.36�9�

r 5.33897e−05

TIP3P
0.151�2�

e−r/10.5�1�

r 5.80041e−05

TIP5P 0.0220�4�e−r/6.71�5� 6.72991e−05

TIP3P 0.0217�5�e−r/6.85�6� 7.78593e−05

TIP5P

8.0�1�
r2.990�8� 2.5292e−05

TIP3P

7.2�1�
r2.940�8� 2.5860e−05
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tence of such a power-law behavior attributed to the presence
of Coulombic interactions �17�.

This motivated us to investigate the origin of the long-
range behavior. In the simulation it is possible to make the
Coulombic interactions vanish smoothly beyond a certain
distance. We did so here at a distance of 12 Å; thereby re-
taining an effective short-range interaction alone which still
reproduces the known solvation peaks in g�r� accurately.
Consequently we can envisage the situation where short-
range solvation peaks are kept untouched and the long-range
Coulombic forces made to vanish. Then the linear-response
theory would suggest that the long-range behavior in l11�r�
should alter. However we notice that the Coulombic trunca-
tion has null effect quantitatively on the long-range nature of
l11�r�. Hence we conclude that the 1 /r3 behavior is not the
correct way to extrapolate to large distances.

Also, we studied the effect of temperature on various ex-
trapolations within TIP3P model �Table II�. This analysis
showed that the long-range behavior of l11�r� responds to the
variation in temperature �and hence density� of the system; in
contradiction with the linear-response theories which predict
a net change in strength only, not in the 1 /r3 nature of cor-
relation.

APPENDIX B

We give briefly the intermediate steps to deduce the force
equation in this section. The technique under consideration is
cumulant expansion used to perform statistical averaging in
an approximate manner �62�. Formally the exponential term
may be expanded as follows:

ZS

Z
=�1 −

1

kT

�1

2
�

S1

dn̂1�n̂1�r1� . ê1�r1���
2 + �1

2
¯��1 −

1

kT

�2

2
�

S2

dn̂2�n̂2�r2� . ê1�r2���
2 + �2

2
¯��

=1 − �1� . . . � − �2� . . . � +
�1�2

4�kT�2�
S1

�
S2

dn̂1dn̂2�n̂1�r1� . ê1�r1���
2�n̂2�r2� . ê1�r2���

2 + ¯� .

In the above expression, the constant term signifies no change in free energy w.r.t. pure system. The linear term in �s’ give
contribution to the surface energy, which we will not consider here as they do not contribute to the force. The bilinear term,
proportional to �1�2, is the distance-dependent contribution to free energy due to interaction between surfaces. The force
between the surfaces arises solely from terms of this kind.

Now, the last expression can be written as exponential over averages, as follows:

TABLE II. TIP3P: l11�r� temperature dependence and corresponding variation in fit function
parameters.

T �P=1 atm�
�K� Fit function RMSD

0.42�3�
e−r/5.0�2�

r
+ 0.031�3�

e−r/24�1�

r 3.3018e−05

280

6.9�1�
r2.90�1� 3.4272e−05

9.00�1�
r3 3.8138e−05

0.34�2�
e−r/5.4�2�

r
+ 0.029�3�

e−r/24�1�

r 2.5412e−05

300

7.2�1�
r2.940�8� 2.5870e−05

8.58�1�
r3 2.7774e−05

0.31�2�
e−r/5.6�3�

r
+ 0.023�3�

e−r/27�3�

r 3.3624e−05

350

6.3�2�
r2.92�1� 3.4253e−05

7.93�1�
r3 3.6437e−05
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e−�G/kT �
ZS

Z
= exp��1� ¯ � + �2� ¯ � +

�1�2

4�kT�2�
S1

�
S2

dn̂1dn̂2��n̂1�r1� . ê1�r1���
2�n̂2�r2� . ê1�r2���

2� + ¯�
force between the surfaces is given by

F�R� = −
��G

�R
�

�1�2

4kT

�

�R
�

S1

�
S2

dn̂1dn̂2��n̂1�r1� . ê1�r1���
2�n̂2�r2� . ê1�r2���

2�

where we have explicitly retained the leading contribution
for large R.

Employing the notation that any repeated index is
summed over,

�n̂1 . ê1�2 � n1
i e1

i n1
j e1

j

�n̂2 . ê1�2 � n2
ke1

kn2
l e1

l

�

�R
��n̂1�r1� . ê1�r1��

2��n̂2�r2� . ê1�r2���
2�

=
�

�R
�n1

i e1
i �r1��n1

j e1
j �r1��n2

ke1
k�r2��n2

l e1
l �r2���

= n1
i n1

j n2
kn2

l �

�R
�e1

i �r1��e1
j �r1��e1

k�r2��e1
l �r2���

= n1
i n1

j n2
kn2

l �

�R
�2�e1

i �r1��e1
k�r2����e1

l �r2��e1
j �r1���

+ ��e1
i �r1��e1

j �r1��e1
k�r2��e1

l �r2��� − 2�e1
i �r1��e1

k�r2���

��e1
l �r2��e1

j �r1�����

where i , j ,k , l are vector indices.
The last step is tautological as we added and subtracted an

important term in the expression. Furthermore, it can be
shown that in a system where asymptotic behavior of corre-
lation �e1

i �r1��e1
k�r2��� is exponentially falling off, the last term

� . . . � in the last expression falls off exponentially even faster
than the first term and therefore it can be neglected in the
asymptotic region �i.e., for large R�.

The vector indices imply matrix multiplication and a trace
operation over the product of matrices coming from j index
summation. This should be clear if we define the matrices,

Eij�R� = �e1
i �r1��e1

j �r2���

��S�ij =
1

A
�

S

dn̂ ninj

where i , j are generic vector indices and R is the minimum
distance of separation. Now the force expression takes the
form,

F�R� =
�1�2

2kT
A1A2

�

�R
Tr��S1

E�R��S2
E�R�� �B1�

where Tr� . . . � means trace over the product of matrices. The

subscripts S1 and S2 refer to respective surfaces and � matrix
defines the second moment of surface normal over the re-
spective surface.

Now, from Eq. �2�,

Eij�r� =
1

2
	�ij −

rirj

r2 
t11�r� −
1

2
	�ij − 3

rirj

r2 
l11�r�

Our analysis from simulation of bulk liquid water shows
that at large distances �R�, only longitudinal part of dipolar
correlations survives, i.e.,

Eij�R� � −
1

2
	�ij − 3

RiRj

R2 
l11�R� where

l11�R� = 0.39
e−R/5.2

R
+ 0.027

e−R/24

R
R � 14 Å.

Hence, the force equation �Eq. �5�� will take the form

F�R� � const
�

�R
Tr� . . . �l11

2 �R�

� �− �const � Tr� . . . �
1

R2exp�− R/12 Å�

where, only the long-range exponential’s contribution is em-
phasized, as analysis is for large distances of separation i.e.,
large R only.

APPENDIX C

The � matrix is a geometric factor related to second mo-
ment of the surface normal. It is defined as

��S�ij �
1

A
�

S

dn̂ninj

where n̂�r� is the local normal vector at the point r on the
surface; i , j are any two out of three vector components of n̂.

For a segment of spherical surface, as illustrated by Fig.
12,

n̂:�sin � cos �,sin � sin �,cos ��;

AS = �
S

dn̂ = �
0

�̄
d� sin ��

0

2

d� = 2�1 − cos �̄�

The integral �ninj can be carried out in a similar manner over
various pairs of n̂ vector components. The � matrix can be
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finally expressed in terms of first moment of the surface as
follows:

��S�ij =
1

A
�

S

dn̂ninj =
1

3
�ij −

1

6
cos �̄�1 + cos �̄���ij − 3NiNj�

Ni =
Mi

�M�
, Mi =

1

A
�

S

dn̂ni

For a sphere, �̄=. Hence �ij = 1
3�ij.

For a plane, �̄=0. Hence �ij =NiNj.

The direction of N̂ is chosen only w.r.t. the side of surface
under consideration.

We show below that the strength of the force depends on
the relative orientations of the surfaces w.r.t. each other. We
consider two planar surfaces separated by large distance in-
side aqueous medium. For the surface S1, �1

ij =N1
i N1

j and
similarly for S2, �2

kl=N2
kN2

l where i , j ,k , l are dummy indices
over three dimensions in coordinate space. For large R,
Eij�R��− 1

2 ��ij −3 RiRj

R2 �l11�R� where i , j are dummy vector in-
dices.

So, the part of force expression involving convolution of
�S and E matrices reads as,

Flarge R 	 �− �Tr�N1
i N1

j	� jk − 3
RjRk

R2 

�N2

kN2
l 	�li − 3

RlRi

R2 
� e−R/12

R2

	 �− ��N̂1 · N̂2 − 3�N̂1 · R̂��N̂2 · R̂��2e−R/12

R2

For surfaces parallel to each other, N̂1 · N̂2= N̂1 · R̂= N̂2 · R̂=1.
Hence F	 �−� e−R/12

R2 .

For surfaces perpendicular to each other, N̂1 · N̂2=0 and

either N̂1 · R̂=0 or N̂2 · R̂=0 depending on orientation of re-
spective surface w.r.t. the radial unit vector. Hence F=0.

�1� C. J. Fecko et al., Science 301, 1698 �2003�.
�2� F. W. Starr, J. K. Nielsen, and H. E. Stanley, Phys. Rev. Lett.

82, 2294 �1999�.
�3� F. N. Keutsch and R. J. Saykally, Proc. Natl. Acad. Sci. U.S.A.

98, 10533 �2001�.
�4� F. H. Stillinger, Science 209, 451 �1980�.
�5� E. E. Meyer, K. J. Rosenberg, and J. N. Israelachvili, Proc.

Natl. Acad. Sci. U.S.A. 103, 15739 �2006�.
�6� P. Ball, Chem. Rev. �Washington, D.C.� 108, 74 �2008�.
�7� M. W. Mahoney and W. L. Jorgensen, J. Chem. Phys. 112,

8910 �2000�.
�8� S. Rick, J. Chem. Phys. 120, 6085 �2004�.
�9� E. Lindahl, B. Hess, and D. van der Spoel, J. Mol. Model. 7,

306 �2001�.
�10� D. Frenkel and B. Smit, Understanding Molecular Simulation,

Computational Science Series �Academic Press, New York,
2001�, Vol. 1.

�11� A. Leach, Molecular Modelling: Principles and Applications,
2nd ed. �Prentice Hall, New York, 2001�.

�12� J. G. Kirkwood, J. Chem. Phys. 7, 911 �1939�.
�13� M. Sharma, R. Resta, and R. Car, Phys. Rev. Lett. 98, 247401

�2007�.
�14� P. L. Silvestrelli and M. Parrinello, Phys. Rev. Lett. 82, 3308

�1999�.
�15� W. L. Jorgensen et al., J. Chem. Phys. 79, 926 �1983�.

�16� L. Kale et al., J. Comput. Phys. 151, 283 �1999�.
�17� J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids,

3rd ed. �Academic Press, U.K., 2006�.
�18� G. Mathias and P. Tavan, J. Chem. Phys. 120, 4393 �2004�.
�19� M. P. Allen and D. J. Tildesley, Computer Simulation of Liq-

uids, 1st ed., Oxford Science Publications �Clarendon Press,
Oxford, 1987�.

�20� J. Kolafa and I. Nezbeda, Mol. Phys. 98, 1505 �2000�.
�21� C. Huang et al., Proc. Natl. Acad. Sci. U.S.A. 106, 15214

�2009�.
�22� L. Bosio, J. Teixeira, and H. E. Stanley, Phys. Rev. Lett. 46,

597 �1981�.
�23� H. K. Christenson and P. M. Claesson, Adv. Colloid Interface

Sci. 91, 391 �2001�.
�24� S. Singh, J. Houston, F. van Swol, and C. J. Brinker, Nature

�London� 442, 526 �2006�.
�25� A. B. de Oliveira, P. A. Netz, T. Colla, and M. C. Barbosa, J.

Chem. Phys. 125, 124503 �2006�.
�26� T. Head-Gordon and F. H. Stillinger, J. Chem. Phys. 98, 3313

�1993�.
�27� E. A. Jagla, J. Chem. Phys. 111, 8980 �1999�.
�28� W. P. Krekelberg, T. Kumar, J. Mittal, J. R. Errington, and T.

M. Truskett, Phys. Rev. E 79, 031203 �2009�.
�29� R. M. Lynden-Bell and P. G. Debenedetti, J. Phys. Chem. B

109, 6527 �2005�.

θ
N
^

−

.. ...
n̂

FIG. 12. A segment of spherical surface �boldened�. n̂ is local

normal vector, and �̄ is the sector angle for the segment. N̂ is the
dipole vector of the segment, obtained by integrating n̂ over the
extent of segment surface �see Appendix C�.

LONG-DISTANCE CORRELATIONS IN MOLECULAR… PHYSICAL REVIEW E 81, 021201 �2010�

021201-9



�30� Z. Yan, S. V. Buldyrev, N. Giovambattista, and H. E. Stanley,
Phys. Rev. Lett. 95, 130604 �2005�.

�31� H. S. Frank and M. W. Evans, J. Chem. Phys. 13, 507 �1945�.
�32� W. Kauzmann, Adv. Protein Chem. 14, 1 �1959�.
�33� D. Chandler, Nature �London� 437, 640 �2005�.
�34� M. Chaplin, Nat. Rev. Mol. Cell Biol. 7, 861 �2006�.
�35� K. A. Dill, T. M. Truskett, V. Vlachy, and B. Hribar-Lee,

Annu. Rev. Biophys. Biomol. Struct. 34, 173 �2005�.
�36� H. S. Ashbaugh, T. M. Truskett, and P. G. Debenedetti, J.

Chem. Phys. 16, 2907 �2002�.
�37� S. V. Buldyrev et al., Proc. Natl. Acad. Sci. U.S.A. 104, 20177

�2007�.
�38� F. Despa and R. Berry, Biophys. J. 95, 4241 �2008�.
�39� A. Wallqvist and B. J. Berne, J. Phys. Chem. B 99, 2885

�1995�.
�40� H. S. Ashbaugh and L. R. Pratt, Rev. Mod. Phys. 78, 159

�2006�.
�41� L. R. Pratt and D. Chandler, J. Chem. Phys. 67, 3683 �1977�.
�42� L. R. Pratt and D. Chandler, J. Chem. Phys. 73, 3434 �1980�.
�43� B. Widom and D. Ben-Amotz, Proc. Natl. Acad. Sci. U.S.A.

103, 18887 �2006�.
�44� B. Widom, P. Bhimalapuram, and K. Koga, Phys. Chem.

Chem. Phys. 5, 3085 �2003�.
�45� J. N. Israelachvili and R. Pashley, Nature �London� 300, 341

�1982�.
�46� N. F. Bunkin et al., Langmuir 13, 3024 �1997�.
�47� H. K. Christenson and P. M. Claesson, Science 239, 390

�1988�.

�48� V. S. J. Craig, B. W. Ninham, and R. M. Pashley, Langmuir
15, 1562 �1999�.

�49� K. Lum, D. Chandler, and J. D. Weeks, J. Phys. Chem. B 103,
4570 �1999�.

�50� P. Attard, Langmuir 12, 1693 �1996�.
�51� P. Attard, M. P. Moody, and J. W. G. Tyrrell, Physica A 314,

696 �2002�.
�52� J. W. G. Tyrrell and P. Attard, Phys. Rev. Lett. 87, 176104

�2001�.
�53� F. Despa and R. S. Berry, Biophys. J. 92, 373 �2007�.
�54� F. Despa, A. Fernandez, and R. S. Berry, Phys. Rev. Lett. 93,

228104 �2004�.
�55� Y. K. Cheng and P. J. Rossky, Nature �London� 392, 696

�1998�.
�56� P. N. Perera et al., Proc. Natl. Acad. Sci. U.S.A. 106, 12230

�2009�.
�57� A. Poynor, L. Hong, I. K. Robinson, S. Granick, Z. Zhang, and

P. A. Fenter, Phys. Rev. Lett. 97, 266101 �2006�.
�58� Y. L. A. Rezus and H. J. Bakker, Phys. Rev. Lett. 99, 148301

�2007�.
�59� P. L. Chau, Mol. Phys. 99, 1289 �2001�.
�60� P. Jedlovszky, J. Phys.: Condens. Matter 16, S5389 �2004�.
�61� T. M. Raschke and M. Levitt, Proc. Natl. Acad. Sci. U.S.A.

102, 6777 �2005�.
�62� N. Goldenfeld, Lectures on Phase Transitions and the Renor-

malization Group, Frontiers in Physics �Perseus Books,
U.S.A., 1992�.

KANTH, VEMPARALA, AND ANISHETTY PHYSICAL REVIEW E 81, 021201 �2010�

021201-10


